
August 2004

NASA/TM-2004-213251

Instrument Attitude Precision Control

Jer-Nan Juang
Langley Research Center, Hampton, Virginia



The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated to the
advancement of aeronautics and space science. The
NASA Scientific and Technical Information (STI)
Program Office plays a key part in helping NASA
maintain this important role.

The NASA STI Program Office is operated by
Langley Research Center, the lead center for NASA’s
scientific and technical information. The NASA STI
Program Office provides access to the NASA STI
Database, the largest collection of aeronautical and
space science STI in the world. The Program Office is
also NASA’s institutional mechanism for
disseminating the results of its research and
development activities. These results are published by
NASA in the NASA STI Report Series, which
includes the following report types:

 
• TECHNICAL PUBLICATION. Reports of

completed research or a major significant phase
of research that present the results of NASA
programs and include extensive data or
theoretical analysis. Includes compilations of
significant scientific and technical data and
information deemed to be of continuing
reference value. NASA counterpart of peer-
reviewed formal professional papers, but having
less stringent limitations on manuscript length
and extent of graphic presentations.

 
• TECHNICAL MEMORANDUM. Scientific

and technical findings that are preliminary or of
specialized interest, e.g., quick release reports,
working papers, and bibliographies that contain
minimal annotation. Does not contain extensive
analysis.

 
• CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored
contractors and grantees.

 
 
• CONFERENCE PUBLICATION. Collected

papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or co-sponsored by NASA.

 
• SPECIAL PUBLICATION. Scientific,

technical, or historical information from NASA
programs, projects, and missions, often
concerned with subjects having substantial
public interest.

 
• TECHNICAL TRANSLATION. English-

language translations of foreign scientific and
technical material pertinent to NASA’s mission.

Specialized services that complement the STI
Program Office’s diverse offerings include creating
custom thesauri, building customized databases,
organizing and publishing research results ... even
providing videos.

For more information about the NASA STI Program
Office, see the following:

• Access the NASA STI Program Home Page at
http://www.sti.nasa.gov

 
• E-mail your question via the Internet to

help@sti.nasa.gov
 
• Fax your question to the NASA STI Help Desk

at (301) 621-0134
 
• Phone the NASA STI Help Desk at

(301) 621-0390
 
• Write to:

           NASA STI Help Desk
           NASA Center for AeroSpace Information
           7121 Standard Drive
           Hanover, MD 21076-1320



National Aeronautics and
Space Administration

Langley Research Center 
Hampton, Virginia 23681-2199

August 2004

NASA/TM-2004-213251

Instrument Attitude Precision Control

Jer-Nan Juang
Langley Research Center, Hampton, Virginia



Available from:

NASA Center for AeroSpace Information (CASI) National Technical Information Service (NTIS)
7121 Standard Drive 5285 Port Royal Road
Hanover, MD 21076-1320 Springfield, VA 22161-2171
(301) 621-0390 (703) 605-6000



 1

Instrument Attitude Precision Control 

 

Jer-Nan Juang 

NASA Langley Research Center 

Hampton, VA 23681 

 

Abstract 

 A novel approach is presented in this paper to analyze attitude precision and 

control for an instrument gimbaled to a spacecraft subject to an internal disturbance 

caused by a moving component inside the instrument.  Nonlinear differential equations of 

motion for some sample cases are derived and solved analytically to gain insight into the 

influence of the disturbance on the attitude pointing error.  A simple control law is 

developed to eliminate the instrument pointing error caused by the internal disturbance.  

Several cases are presented to demonstrate and verify the concept presented in this paper.   

 

Keywords: Attitude dynamics and control, feedback control, spacecraft dynamics  

 

Introduction 

This paper was originally motivated by developing a fine-pointing control 

algorithm for enabling the GIFTS (Geostationary Imaging Fourier Transform 

Spectrometer) instrument to meet its mission requirements [1]. GIFTS combines a 

number of advanced technologies to observe atmospheric weather and chemistry 

variables in four dimensions.  It will enable meteorological soundings equivalent to those 

achieved by simultaneously launching of 16,384 closely spaced radiosonde balloons 

within a 600-km diameter circle about every 10 seconds.  It will revolutionize 

atmospheric science and meteorological forecasting.  GIFTS instrument/mission affords 

an opportunity to space-qualify a significant number of new technologies, payload and 

non-payload specific, for future generation remote sensors. 
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The GIFTS attitude precision for the instrument pointing requires the use of a 

lightweight, low power, inexpensive, and highly reliable mini-star-tracker for estimation 

of the spacecraft orientation. Note that star cameras are among the most attractive attitude 

sensors, because they provide three-axis attitude information with high accuracy. 

Considerable work has been done in developing the mini-star-tracker, along with attitude 

estimation algorithms producing significant achievements as documented in Refs. [2-10].  

The main role of the mini-star-tracker that will be integrated into an Optical Pointing and 

Stabilization Control System (OPSC) is to achieve the GIFTS pointing requirements.   

The goal of the OPSC is to orient and stabilize the GIFTS optical instrument with 

respect to the Earth. OPSC will scan the earth as well as the near-stellar region off the 

earth’s horizon in a step-stare procedure. Imaging occurs during a ten second stare at a 

specific point on earth, followed by a step motion of one FOV to a new target within one 

second, covering the disc of the earth approximately every 15 minutes.   OPSC will also 

stabilize the optical boresight against disturbance motions generated by the spacecraft 

that carries the GIFTS optical instrument. 

The original strategy of the GIFTS OPSC is shown in Figure 1.  The optical 

platform is mounted on a two-axis flex-pivot gimbal for boresight pointing control while 

vibration is reduced through a high bandwidth jitter control mirror. Attitude 

measurements are made by a dual star camera system and jitter is measured by an MEMS 

rate sensor integrated with the star cameras. Gimbal and jitter mirror angle measurements 

are made using high precision electro-optic sensors.  A separate processor is used for 

system control. 

 This paper begins with a brief introduction of two-body dynamics.  All 

differential equations of motion derived for many differential cases are based on the 

fundamental concept of two-body dynamics.   A simple configuration of a rigid body 

with an internal moving part representing the GIFTS instrument rigidly attached to a 

spacecraft will be discussed.  Parametric studies will be performed to understand how the 

moving part influences the overall system motion, in particular the inertial pointing.  The 

other configuration to be studied consists of one rigid body (spacecraft) gimbaled by 

another rigid body (instrument) with a moving part inside.  Three rigid bodies are 

involved in this configuration making the case extremely complex in deriving equations 
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of motion for designing a control-torque law to meet the instrument attitude precision 

requirements.  Furthermore, it is very difficult, if not impossible, in performing 

parametric studies for general cases.  For simplicity, without losing generality, we will 

limit the parametric and numerical studies in one rotational axis.   

 

 

Figure 1: Optical Pointing and Stabilization Control System (OPSC). 

 

Basic Formulation 

The basic configuration consists of the spacecraft and the optical instrument with 

a moving mirror. OPSC is designed to orient and stabilize the optical instrument by 

providing a control torque/force against the spacecraft. During the control maneuvering, 

coupled motion of the spacecraft and the instrument takes place.  To describe the overall 

system motion, multiple-body dynamics are involved.  Basic formulations for two-body 

dynamics will be briefly described in this section [11]. 

From Figure 2, let ma be the mass of the body a (for our case, the spacecraft that 

carries the optical instrument), va  be the velocity of the coordinate origin 0a, aω  be the 

angular velocity of the body, and ρa  be the distance vector from 0a to an arbitrary point 
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in the body. Subscript a signifies the associated quantity for the body.  The linear 

momentum of the body over the domain aΩ  is described by 

 ( )( ) p v ω ρ v ω c
a

a a a a a a a a adm m
Ω

= + × = + ×∫  (1) 

where  

 1  c ρ
a

a a a
a

dm
m Ω

= ∫  

is the definition of the center of mass (CM).   

 

 

Figure 2: Body and inertia coordinates for two-body dynamics. 

 

Similarly, define mb as the mass of the body b, vb  as the velocity of the 

coordinate origin 0b, ωb  as the angular velocity of the body b, rp  as the distance vector 

from 0a to 0b where the optical instrument is maneuvered for fine pointing, and ρb  as the 

distance vector from 0b to an arbitrary point in the body b.  The linear momentum of the 

body b over the domain bΩ  is 
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[ ] 

[ ( ) ] 

( )

p v ω ρ

v ω r ρ ω ρ

v ω r c ω c

b

b

b b b b b

a a p b p b b

b a a p b p b

dm

dm

m

Ω

Ω

= + ×

= + × + + ×

⎡ ⎤= + × + + ×⎣ ⎦

∫

∫  (2) 

where the angular velocity ω p  of body b relative to body a is 

 p b a= −ω ω ω  

and the center of mass cb  is  

 1  c ρ
b

b b b
b

dm
m Ω

= ∫  

The basic momentum equation of motion about point 0 (a or b) is 

 ( ) dm
Ω

= × +∫ oh ρ v v  (3) 

with v = ρ  being the velocity of an arbitrary point in Ω . Equation (3) is applicable for 

both bodies a and b. For body a, replace h, ρ , and ov  by ha , aρ , and va . For body b, 

replace h, ρ , and ov  by hb , bρ , and vb .   The angular momentum of the body a about 

its reference point 0a is   

 ( )( )h ρ v ω ρ c v I ω
a

a a a a a a a a a a adm m
Ω

= × + × = × +∫  (4) 

where  

 ( ) ( )
a a

T T
a a a a a a a a a a a adm dmI ω ρ ω ρ ρ ρ 1 ρ ρ ω

Ω Ω
⎡ ⎤= × × = −⎢ ⎥⎣ ⎦∫ ∫  

and 1 is a 3 by 3 identity matrix. Note that the second equality is written in matrix form 

for easy numerical implementation. Similarly, The angular momentum of the body b 

about its reference point 0b is   

 

( )

( )

[ ( ) ]

h ρ v ω ρ

ρ v ω r ρ ω ρ

c v I ω I ω

b

b

b b b b b b

b a a p b p b b

b b a ba a b p

dm

dm

m

Ω

Ω

= × + ×

= × + × + + ×

= × + +

∫

∫  (5) 
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where 

 ( ) ( )I ω ρ ω ρ ρ ρ 1 ρ ρ ω
b b

T T
b p b p b b b b b b b pdm dm

Ω Ω
⎡ ⎤= × × = −⎢ ⎥⎣ ⎦∫ ∫  

and 

 

( )

[ ( )]

[ ( ) ( ) ]

[ ]

I ω ρ ω r ρ

ρ r ρ 1 r ρ ρ ω

I c r 1 r c ω

b

b

ba a b a p b b

T T
b p b p b b b a

T T
b b b p p b a

dm

dm

m

Ω

Ω

= × × +

⎡ ⎤= + − +⎢ ⎥⎣ ⎦

= + −

∫

∫  

The temporal derivative of h from Eq. (3) becomes 

 

( ) ( )

( )

o o

o

o

h ρ v v ρ v v

v v v ρ f

p v

Ω Ω

Ω Ω

τ

= × + + × +

= × + + ×

= × +

∫ ∫

∫ ∫

dm dm

dm d  (6) 

From Eqs. (1) and (2) , the equations of motion for translation are: 

 p f f= −a a p  (7) 

and 

 p f f= +b b p  (8) 

where fa and fb are external forces applied to a and b respectively, and fp is the internal 

force acting at the joint 0b. From Eq. (6), the equation of motion for rotation about the 

origin 0a for the body a is: 

 h v p τ τ r f+ × = − + ×a a a a p p p  (9) 

and the equation of motion for rotation about the joint 0b for the body b is 

 ( )h v ω r p τ τ+ + × × = +b a a p b b p  (10) 

where τa  and τb  are external toques applied to a and b respectively, and τ p is the 

internal torque acting at 0b. 

 Summing Eqs. (7) and (8) for system translation yields 

 p p f f p f+ = + ⇒ =a b a b  (11) 

The rate of change in the total system momentum equals to the total external force.  On 

the other hand, adding Eq. (9) to Eq. (10) for system rotation gives 
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 ah v p τ+ × =  (12) 

where the total angular momentum 

 ( )a b p b a a ab pmh h h r p c v Iω I ω= + + × = × + +  (13) 

and the torque is 

 τ τ τ r fa b p b= + + ×  

The total moment of inertia over aΩ  and bΩ  about 0a is 

 
[( ) ( ) ( )( ) ]

( ) (2 )

I I r ρ r ρ 1 r ρ r ρ

I I r r 1 r r r c 1 r c c r
b

T T
a p b p b p b p b b

T T T T T
a b b p p p p b p b p b b p

dm

m m
Ω

= + + + − + +

= + + − + − −

∫  

The center of mass for the whole system over aΩ  and bΩ  is 

 ( );    c c c ra a b b p a bm m m m m m= + + = +  

The mix moment of inertia is 

 ( )[ ( ) ( ) ]I ρ r ρ 1 ρ r ρ I r c 1 c r
b

T T T T
ab b p b b p b b b b p b b pdm m

Ω
= + − + = + −∫  

Equation (12) implies that the rate of change in the total system angular momentum 

equals the total external torque.  The equation of motion to orient and stabilize body b 

can be obtained by inserting Eq. (2) into Eq. (10) to yield 

 ( ) [ ( )]h v ω r c ω ω τ τb a a p b b a p b pm= + × × × + + +  (14) 

Equations (11), (12), and (14) are differential equations of motion for a two-body 

dynamical problem with one body to be reoriented for fine pointing.  For easy numerical 

implementation, they may be reformulated in terms of matrix form as 

 

{ }

[ ]

[ ] [ ]

[ ] ( [ ] ) [ ] ( )

a

a a

b b ba a a p b b ba a p b pm

p ω p f

h τ ω h v p

h h T v ω r c T ω ω τ τ

= − × −

= − × − ×

⎡ ⎤= × + + × × × + + +⎣ ⎦

 (15) 

where each vector quantity has three components, and Tba is the transformation matrix 

from the body frame a to the body frame b.  For any vector ω , its [ ]ω×  is 

 
1 3 2

2 3 1

3 2 1

0
[ ] 0

0
ω ω

ω ω ω
ω ω ω
ω ω ω

−⎧ ⎫ ⎡ ⎤
⎪ ⎪ ⎢ ⎥= ⇒ × = −⎨ ⎬ ⎢ ⎥⎪ ⎪ ⎢ ⎥−⎣ ⎦⎩ ⎭
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Based on Eqs. (1), (2), (5), and (13), the momentum equation in matrix form is 

 
[ ] [ ]

[ ]
[ ]

ab b b a

ab a

b b b ba ba b p

m m m
m

m

⎡ ⎤− × − ×⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥℘= ⇒ = × ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥×⎣ ⎦ ⎣ ⎦ ⎣ ⎦

p 1 c T c v
Μ v h c I I ω

h c T I I ω
 (16) 

where 

( )

( )

( ){ }
( ){ }

1 ;    

( ) 2

a a b ab b p a b

T T T T T T T
a ab b ab b p p p p b p ab b p b ab ab b p

T T T
ab ab b b b ba p b p ba

T T
ba b b b ba p ba p b ba

m m m m m
m

m m

m

m

⎡ ⎤= + + = +⎣ ⎦

⎡ ⎤⎡ ⎤= + + − + − −⎣ ⎦ ⎣ ⎦

⎡ ⎤= + −⎣ ⎦

⎡ ⎤= + −⎣ ⎦

c c T c r

I I T I T r r 1 r r r T c 1 r c T T c r

I T I c T r 1 c r T

I I c T r 1 T r c T

 

Note thatp and h contain components in the body frame a, but bh contains components in 

the body frame b. Angular velocity becomes 

 1v Μ−= ℘  (17) 

To compute the transformation matrix from one frame to the other involves 

kinematics. Let the quaternion vector q be the four components expressed by 

 

1

2

3

4

q
q
q
q

q

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (18) 

The quaternion vector equation is 

 
4

1 ( )
2

d q
dt

q ω ω q= − ×  (19) 

and its scalar equation is 

 
4

1
2

d q
dt

ω q= − ⋅  (20) 

Equations (19) and (20) in matrix form are 

 

3 2 1 11

3 1 2 22

2 1 3 33

1 2 3 44

0
01

02
0

ω ω ω
ω ω ω
ω ω ω
ω ω ω

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − ⎣ ⎦⎣ ⎦⎣ ⎦

qq
qq
qq
qq

 (21) 
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Note that both bodies have the same form of kinematics.  For the spacecraft, replace ω  

by aω  and q by aq . For the instrument, replace ω  by bω  and q by bq .  The 

transformation matrix from inertia frame to body frame becomes 

 

1 2 3 4 1 2 4 3 1 3 4 2

2 1 4 3 1 2 3 4 2 3 4 1

3 1 4 2 3 2 4 1 1 2 3 4

2 2 2 2

2 2 2 2
BI

2 2 2 2

2( ) 2( )

2( ) 2( )

2( ) 2( )

q q q q q q q q q q q q

q q q q q q q q q q q q

q q q q q q q q q q q q

T

⎡ ⎤− − + + −
⎢ ⎥
⎢ ⎥= − − + − + +⎢ ⎥
⎢ ⎥+ − − − + +⎢ ⎥⎣ ⎦

 (22) 

This matrix and its transpose are used to transform vectors from the inertia frame to the 

body frame, and vice versa. 

One-Rotation-Axis Plane Motion  

For simplicity, let us assume that the moving mirror is the only moving part of the 

spacecraft together with the optical instrument.  In other words, the optical instrument is 

locked to the spacecraft as shown in Figure 3.  

Figure 3: Body and inertia coordinates for one-rotation-axis plane motion. 

 
The spacecraft linear momentum with the total mass am  and the coordinate origin 

at the center of mass is 

 
( )

( cos sin ) ( sin cos )
X Y

x y

p v e e

e e
a a a a

a a

m m X Y

m X Y m X Yθ θ θ θ

= = +

= + + − +
 (23) 
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where θ  is the rotation angle from the inertia frame and the body frame.  The unit vector 

Xe  indicates the direction of the inertia axis X, and Ye  is the unit vector for the inertia 

axis Y.  The quantities X  and Y  are the speeds of the coordinate origin along Xe  and Ye , 

respectively.  The instrument linear momentum with the mass bm  is 

 
( ) [( ) ]

[( cos sin ) ( sin cos ) ]

b b a a p b b

b

m m X Y

m X Y X Y

θ

θ θ θ θ θ

⎡ ⎤= + × + = + + ×⎣ ⎦
= + − + − +

X Y z y

x y

p v ω r c e e e e

e e
 (24) 

where the unit vectors xe , ye , and ze  give the directions of the body coordinates x, y, and  

z, respectively.  The quantity θ  is the angular velocity of the spacecraft, and  is the 

distance from the center of mass of the spacecraft to the center of mass of the instrument.  

The moving-mirror linear momentum (assume point mass) is 

 
( ) ( ) ( )

( cos sin ) ( sin cos )

s s a a s s

s

m m X Y s s

m X Y s X Y s

θ

θ θ θ θ θ θ

⎡ ⎤= + × + = + + × + +⎣ ⎦
⎡ ⎤= + − + + − + +⎣ ⎦

X Y z y x x

x y

p v ω r s e e e e e e

e e
 (25) 

where s is the distance from the center of mass of the instrument to the moving-mirror 

that is considered as a point mass..  

 Note the following coordinate transformation 

 
cos sin

sin cos

x X Y

y X Y

θ θ

θ θ

⎧ = +⎪
⎨

= − +⎪⎩
 (26) 

Equations (23), (24), and (26) reduce to 

 

[ ]

[( ) ]

[( ) ( ) ]

a a

b b

s s

m x y

m x y

m x s y s

x y

x y

x y

p e e

p e e

p e e

θ

θ θ

= +

= − +

= − + + +

 (27) 

Spacecraft angular momentum about the reference point o is  

 ( ) I I
a

a a a a a a a a adm zh ρ v ω ρ ω eθ
Ω

= × + × = =∫  (28) 

Instrument angular momentum about the reference point o is 
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 [ ] I
[ I ]

b b b a ba a

b y ba

b ba

m
m x y

m x
x y z

z

h c v I ω
e e e e

e
θ

θ

= × +
= × + +
= − +

 (29) 

Moving-mirror angular momentum about the reference point o is 

 { }
[r ( r r )]
[ ] [ ] [ ]

{ [ ] [ ]}

s s s a a s s

s

s

m
m s x s y s

m x s s y s
y x x y

z

h v ω
e e e e

e

θ θ

θ θ

= × + × +
= + × − + + +

= − − + + +

 (30) 

Translational equation of motion for the whole system is 

 a

a

( ) ( )
( ) 0
b s b s s

b s s

m m m x m m m s
m m m y m sa b sp p p p 0

θ
θ

⎧ + + − + = −
= + + = ⇒ ⎨ + + + =⎩

 (31) 

Rotational equation of motion for the whole system with p = 0 is 

 2 2( ) [I I ( )]
s

b s s a ba s sm m x m sy m s m s
a bh h + h + h 0

θ
= =

⇒ − + + + + + + =
 (32) 

Equations (31) and (32) yield the following matrix equation of motion 

 
2 2

0 ( )
0 0

( ) I I ( )

a b s b s s

a b s s

b s s a ba s s

m m m m m x m s
m m m m s y

m m m s m s m sθ

⎡ ⎤+ + − + −⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥+ + =⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥− + + + +⎣ ⎦ ⎣ ⎦⎣ ⎦

 (33) 

Define the non-dimensional quantities as 

 

( )

1 2

2

1 2

, , ,

,

I II

b s s

a b s a b s

a ba s

a b s

x y sx y s

m m m
m m

m m m m m m

m
m m m

= = =

+
= =

+ + + +

+ +
=

+ +

 (34) 

then the matrix equation of motion, i.e., Eq. (33), becomes 

 
1 2

2
2

1 2 1 2 2

1 0
0 1 0

I

xm m s
m s y

m m s m s m sθ

⎡ ⎤ ⎡ ⎤− −⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ = ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥− +⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

 (35) 

Equation (35) may be solved to yield the following differential equations to be integrated  
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2

2 1 1 2 2
2 2

1 1 2 2

I (1 )
I (1 )

m m m m s s
x

m m m s

⎡ ⎤− − + −⎣ ⎦=
− + −

 (36) 

 
2

1 2
2 2

1 1 2 2

(1 )
I (1 )

m m s sy
m m m s
− −=

− + −
 (37) 

 1 2
2 2

1 1 2 2

(1 )
I (1 )

m m s
m m m s

θ
− −

=
− + −

 (38) 

Analytical solutions for Eqs. (36), (37), and (38) are 

 
( ) ( ) ( )

( )( )

1 2
1 2 2 1 1

2
1 1 2 2

1 tan 1 I

I 1

m s m m m

m m m
θ

− ⎡ ⎤− − −⎢ ⎥⎣ ⎦=
− −

 (39) 

 
( ) ( )2 2

1 2 1 1 2 2

2

1 log I 1
2(1- )

m m m m m s
y

m

⎡ ⎤− − + −⎣ ⎦= −  (40) 

and  

 1 2x m m sθ= −  (41) 

Equation (39) shows the relationship among the rotation angle θ , the moving-mirror 

motion s , and the inertia ratio 1I  with given mass ratios 1m  and 2m . The angle error θ  

induced by the moving-mirror motion is proportional to s  for sufficiently small s  and 

large 1I , because under such condition ( ) ( )1 2
2 2 1 1tan 1 Is m m m− ⎡ ⎤− −⎢ ⎥⎣ ⎦  approaches  

( ) ( )2
2 2 1 11 Is m m m− − .  Figure 4 illustrates the complex but interesting relationship 

where the moving mass, the spacecraft mass, and the instrument mass were given from an 

earlier GIFTS design.  For large moving-mirror motion ( 1s → ) and relatively small 

inertia ratio ( 1I 20< ), the pointing-angle error may be larger than 0.02 degree.  The 

inequality 1I 20<  implies that the moving mirror is located away from the center of mass 

of the spacecraft ( 0 ) and the moment of inertia ( 2I Ia ba sm+ + ) is relatively small 

such that the ratio of 2I Ia ba sm+ +  to ( ) 2
a b sm m m+ +  is less than 20.  The relationship 

surface is quite nonlinear in the upper-front-end corner.  To minimize the pointing-angle 

error via a control torque requires a nonlinear control law that will be developed in the 

following section. 
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Figure 4: Relationship among the angle error θ , the moving-mirror motion s , and the 
inertia ratio 1I .  

 

Two-Rotation-Axis Plane Motion 

 Let the instrument be allowed to rotate along the z-axis.  Let a aω θ=  be the 

rotational speed of the spacecraft about the z-axis and b bω θ=  be the rotational speed of 

the instrument also about the z-axis.  Figure 5 illustrates the quantities required for the 

following development of the dynamic equations. 

 First note the coordinate transformation from the body coordinates of the 

spacecraft to the inertial coordinates 

 
cos sin
sin cos

a a

a a

xX

yY

ee
ee

θ θ
θ θ

− ⎡ ⎤⎡ ⎤⎡ ⎤
= ⎢ ⎥⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 (42) 

and the transformation from the body coordinates of the instrument to the inertial 

coordinates 

 
cos sin
sin cos

b b

b b

x'X

y'Y

ee
ee

θ θ
θ θ

− ⎡ ⎤⎡ ⎤⎡ ⎤
= ⎢ ⎥⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 (43) 
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Figure 5: Body and inertia coordinates for two-rotation-axis plane motion. 

 

The spacecraft linear momentum is 

 
( )
( cos ) ( sin )

a a a a a

a a a a a a a

m

m X c Y cX Y

p v ω c

e eθ θ θ θ

= + ×

⎡ ⎤= − + −⎣ ⎦
 (44) 

where av  is the velocity at the coordinate origin o (i.e., the contact point of the spacecraft 

and the instrument), X  and Y  are its components along Xe  and Ye  in the inertial frame, 

respectively.  For simplicity, without losing generality, the spacecraft center of mass ac  

is assumed to be in the direction of ye .  The instrument linear momentum is 

 
[ ]
( ) ( )cos sin

b b a b b

b b b b b b b b

m

m X c m Y cX Y

p v ω c

e eθ θ θ θ

= + ×

⎡ ⎤= − + −⎣ ⎦
 (45) 

Note that the direction of the body coordinate 'ye  is chosen to pass through the 

instrument center of mass.  The linear momentum of the moving-mirror traveling in the 

direction 'xe  is 
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center
ma, va ,ωa

ca

Inertial
Frame

Instrument

Spacecraft

ms

mb

ex

ez

Moving 
mirror

s

eZ

eX

eY

Ia

Iba

ωb o

cb

Mass 
center
ma, va ,ωa

ca

Inertial
Frame

Instrument

Spacecraft

ms

mb

ex

ez

Moving 
mirror

s

eZ

eX

eY

eZ

eX

eY

Ia

Iba

ωb o

cb



 15

 

( )
( cos sin ) cos

  ( cos sin ) sin

s s a b b

s b b b b b

s b b b b b

m

m X c s s

m Y s c s

θ θ θ θ

θ θ θ θ

⎡ ⎤= + × + +⎣ ⎦
⎡ ⎤= − + +⎣ ⎦
⎡ ⎤+ + − +⎣ ⎦

X

Y

p v ω c s s

e

e

 (46) 

Spacecraft angular momentum about the reference point o is 

 
( )

( )
[ ]

cos sin I

a
a a a a a a a a a a a

a a a a a a

dm m

m c X Y Z

h ρ v ω ρ c v I ω

eθ θ θ

Ω
= × + × = × +

⎡ ⎤= − + +⎣ ⎦

∫
 (47) 

Instrument angular momentum about the reference point o is 

 
( )

( )
[ ]

cos sin I

b
b b a b b b b b a b b

b b b b b b

dm m

m c X Y Z

h ρ v ω ρ c v I ω

eθ θ θ

Ω
= × + × = × +

⎡ ⎤= − + +⎣ ⎦

∫
 (48) 

Moving-mirror angular momentum about the reference point o is 

( ) ( )
{ }

b

2 2

c s [ c s]

( cos sin ) ( sin cos ) ( )

s s a b b

s b b b b b b b b b

m s

m c s X c s Y c s c s Z

h v ω

eθ θ θ θ θ

= + × + × + +

= − + − − + + −
 (49) 

To perform the parametric study, let us define the following non-dimensional 

quantities 

 

( ) ( )

1 2

1 22 2

 ; ; ; = ; = ; 

;  ;

I I
I   ;  I  

a b
a b

b s s

a b s a b s

a b

a b s a b s

c cX Y sX Y s c c
c c c c c

m m m
m m

m m m m m m

m m m c m m m c

= = =

+
= =

+ + + +

= =
+ + + +

 (50) 

and  

 ( ) ( ) ( )2 2 ; ;  b s
b s

a b s a b s a b sm m m c m m m c m m m c
+

= + = =
+ + + + + +

h hp hp h h h  (51) 

where c is an arbitrary positive constant intuitively set to be a bc c c= + .  Normalizing 

the total linear momentum a b sp = p  + p  + p  yields 

( )

( )

1 1 2 2

1 1 2 2

(1 ) cos cos sin cos

(1 ) sin sin cos sin

x a a a b b b b b

y a a a b b b b b

p X m c m c m s m s

p Y m c m c m s m s
p

θ θ θ θ θ θ

θ θ θ θ θ θ

⎡ ⎤⎡ ⎤ − − − + +⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥
⎢ ⎥− − − − +⎣ ⎦ ⎣ ⎦

 (52) 
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Normalizing the sum of the angular momentums hb and hs produces 

 
{

}
1 2 1 2

2 2
2 2 2 2

[ cos sin ] [ sin cos )]

  [I ]

b s b b b b b b

b b b

m c m s X m c m s Y

m c m s m c s z

h h

e

θ θ θ θ

θ

+ = − + − −

+ + + −
 (53) 

Furthermore, normalizing the total angular momentum of the system h = ha+ hb+ hs 

yields 

 

{

}

1 1 2

1 1 2

2 2
1 2 2 2 2

[(1 ) cos cos sin ]

 [(1 ) sin sin cos )]

  I  [I ]

a a b b b

a a b b b

a b b b

m c m c m s X

m c m c m s Y

m c m s m c s z

h

e

θ θ θ

θ θ θ

θ θ

= − − + +

− − + −

+ + + + −

 (54) 

The angular momentum in Eq. (53) or (54) has only one component along the Z axis. 

 

Differential Equations of Motion 

 With no external force applied to the system and zero initial condition, differential 

equations of motion for the overall system translation are 

 

0 0
0 0

( 0) 0
( 0) 0

xx

y y

x x

y y

pp
p p

p p t
p p t

p p

p

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥= = ⇒ = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

=⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⇒ = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⎣ ⎦⎣ ⎦ ⎣ ⎦

 (55) 

where p  is the non-dimensional quantity defined in Eq. (50) with the assumption of zero 

initial linear momentum, i.e., ( 0) =tP 0= .  The differential equation for the overall 

system rotation with no external force and torque is 

 a= − × = ⇒ =h τ v p 0 h 0  (56) 
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The differential equation of motion for the instrument rotation is 

 

[ ]{ }
{

[ ]
[ ]}

( + )

( )

sin cos

   cos ( ) sin

     sin ( ) cos

b s a b s p

a b b s b s s p

p s b s b

b s b b s b b

b s b b s b b z

m m m m

m Xs m Ys

X m s m m c

Y m s m m c

h + h v p p τ

v θ c s s τ

e

τ θ θ

θ θ θ

θ θ θ

= − × +

= − × × + + + +

= − +

+ − + +

− + +

 (57) 

that produces the non-dimensional equation of motion 

 

{
[ ]
[ ]}

2 2

2 1

2 1

 sin  cos

   cos sin

   sin cos

b s p b b

b b b b

b b b b z

m X s m Y s

X m s m c

Y m s m c

τ θ θ

θ θ θ

θ θ θ

= − +

+ − +

− +

h + h

e

 (58) 

where  

 ( ) ( ) ( )2 2 2; ; pb
b s p

a b s a b s a b sm m m c m m m c m m m c
τ

τ= = =
+ + + + + +

sh h
h h  (59) 

In view of Eqs. (52), (53), and (54), the whole system can be described by the 

following four equations [see Eq. (15)] 

 [ ]

[ ]
2 2 2 1

2 1

0; 0; 0;

 sin  cos cos sin

sin cos

x y z

z p b b b b b b

b b b b

p p h

m X s m Y s X m s m c

Y m s m c

τ θ θ θ θ θ

θ θ θ

= = =

= − + + − +

− +

 (60) 

where zh  and z  are the components of h  and b s+h h  in the inertial direction ze .  

Equation (60) can be integrated to solve for the time histories of xp , yp , zh , and z .  

Note that the third equation in Eq. (60) is valid only when the condition 0x yp p= =  is 

satisfied at all times and no external torque is applied. At any time t, the quantities X , Y , 

aθ , and bθ  can be updated by using Eqs. (52), (53), and (54) to first form 

 Μ v β℘= +  (61) 
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where  

 

2

2

2

2

c

s
; ;

bx

by

z ba

z bb

X m sp
m sp Y

h m c s

m c s

v β

θ
θ

θ
θ

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥℘= = =⎢ ⎥ ⎢ ⎥⎢ ⎥ −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ −⎣ ⎦⎢ ⎥⎣ ⎦

 (62) 

and  

1 1 2

1 1 2

2 21 1
1 2 2 2

1 2 1 2

2 2
1 2 1 2 2 2 2

1 0 ( 1) c c s

0 1 ( 1) s s c

( 1) c ( 1) s I Ic s s c

c s s c 0 I

a a b b b

a a b b b

a a a a
b

b b b b b b

b b b b b b b

m c m c m s

m c m c m s

m c m c m c m sm c m s m c m s

m c m s m c m s m c m s

M

θ θ θ

θ θ θ

θ θ
θ θ θ θ

θ θ θ θ

⎡ ⎤− − −⎢ ⎥
⎢ ⎥

− − +⎢ ⎥
= ⎢ ⎥− −⎢ ⎥+ +− − − +⎢ ⎥
⎢ ⎥− − − + + +⎢ ⎥⎣ ⎦

(63) 

yield the update equation 

 ( )-1v = M β℘−  (64) 

in which  

 c cos ; s sin ; c cos ; s sin ;a a a a b b b bθ θ θ θ θ θ θ θ= = = =  (65) 

Equation (64) can then be integrated to obtain the desired quantities X , Y , aθ , and bθ  

for use in computing a new quantity z  via integrating Eq. (60).   

On the other hand, one may prefer to have a conventional set of equations of 

motion that involve physical accelerations.  Differentiating Eqs. (52), (53), and (54) and 

then applying Eqs. (55), (56), and (58) produce the matrix equation of motion 

 Mx = f  (66) 

where M is defined in Eq. (63), and 

 
a

b

X
Y

x
θ
θ

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (67) 
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and 

 

2 2
2 1 2 1 2

2 2
2 1 2 1 2

2 2 1 1

1 1 2

c ( 1) s 2 s ( s c )

s ( 1) c 2 c ( c s )

c ( 1) s ( 1) c

s c

b a a a b b b b b b

b a a a b b b b b b

b b b a a a a a a

b b b b b b

m s c m m s c m m s

m s c m m s c m m s

c m s m sX c m X c m Y

c m X c m Y m

f

θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ

θ θ θ θ θ θ

θ θ θ θ

− + − + − −

− − − − + +

=
+ + − − −

− + − ( ) 2

2 2

c 2 s s

2

b b b b b

p b b

s Y s X Ym s

m s s c m s

θ θ θ θ θ

τ θ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ + − + ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− +
⎢ ⎥
⎢ ⎥⎣ ⎦

 (68) 

What is the torque pτ  in Eq. (68) that will drive the instrument to satisfy the precision 

pointing requirement?  This question will be answered below. 

Control Torque for Attitude Precision Pointing 

 The equality 0b bθ θ= =  represents the condition where the instrument has no 

angular velocity relative to the inertial frame.  The differential equations of motion for 

the instrument rotation with 0b bθ θ= =  are 

 1 2 2

2

b s b b

b s p

h h m c X m sY m c s

h h m sYτ

⎧ + = − + −⎪
⎨
⎪ + = +⎩

 (69) 

Differentiating the top equation of Eq. (69) and substituting it into the bottom equation 

yields the toque required for the instrument fine pointing   

 1 2 2p b bm c X m sY m c sτ = − + −  (70) 

where s  is a pre-specified quantity; X  and Y  may be measured by using accelerometers.  

Equation (70) shows that the control torque is a weighted sum of the acceleration s  for 

the moving mirror and the accelerations X  and Y  of the spacecraft at the joint with the 

instrument attached.  Note that other control techniques, such as predictive control [12], 

may also be used for fine-pointing the instrument subject to known and/or unknown 

periodic disturbances. 
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For the case where the spacecraft is sufficiently large in comparison with the 

instrument such that  

 0  and  0X Y≈ ≈  (71) 

the torque shown in Eq. (70) will then approach to 

 2p bm c sτ ≈ −  (72) 

System translation for 0b bθ θ= =  is derived as follows.  Substituting 0b bθ θ= =  

into Eq. (52) with the aid of Eq. (55) yields  

 1 2(1 ) cos 0a a aX m c m sθ θ− − + =  (73) 

 1(1 ) sin 0a a aY m c θ θ− − =  (74) 

From Eqs. (54) and (56), the total angular momentum for 0b bθ θ= =  is 

 1 1 1 2 1 2[(1 ) cos ] [(1 ) sin ]  I 0a a b a a a bm c m c X m c m s Y m c sθ θ θ− − + − − − + − =  (75) 

Equations (73), (74) and (75) produce the following differential equations to be 

integrated 

 
[ ]{ }2 1 1 2 1

2 2
1 1 1 2 1

I (1 ) cos sin (1 ) sin

I (1 ) (1 ) ( sin cos )
a b a a a a

a a a b a

m c m c m s m c s
X

m c m c m s m c

θ θ θ

θ θ

− − − + − + −
=

− − + − −
 (76) 

 
2

1 2
2 2

1 1 1 2 1

(1 ) ( cos )sin
I (1 ) (1 ) ( sin cos )

a b a a a

a a a b a

m m c c c s
Y

m c m c m s m c
θ θ
θ θ

− −
=

− − + − −
 (77) 

 1 2
2 2

1 1 1 2 1

(1 ) ( cos )
I (1 ) (1 ) ( sin cos )

b a a
a

a a a b a

m m c c s
m c m c m s m c

θ
θ

θ θ
− −

=
− − + − −

 (78) 

Integrating Eqs. (76), (77), and (78) simultaneously and analytically is quite difficult, if 

not impossible.  A numerical example is given in the following section to illustrate the 

concept developed in this paper.  In particular, we will show how the control torque 

works for the instrument precision pointing and its influence to other quantities such as 

the system translational and rotational displacements. 
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Parametric and Numerical Analyses 

A representative case will be studied in this section.  Given certain parameters, 

such as the mass and inertia ratios, we will derive the control torque for instrument 

precision pointing and show its relationship with the mirror motion and its influence to 

the overall system motion.   

Control Torque with Given Mass and Inertia Ratios 

Let us assume that the mass-center offset ratios of the spacecraft and the 

instrument away from the joint o of the two bodies are given by. 

 = 0.9; = 0.1;a b
a b a b

c cc c c c c
c c
= − = = +  (79) 

where c is the total mass-center offset.  In addition, assume that the mass ratios 1m  and 

2m  among the spacecraft mass am , the instrument mass bm , and the moving-mirror mass 

sm , and the inertia ratio 1I  related to the spacecraft inertia are given as 

 

( ) ( )

1 2

1 22 2

0.1  ; 0.01

I II 1; I 0.1

b s s

a b s a b s

a b

a b s a b s

m m m
m m

m m m m m m

m m m c m m m c

+
= = = =

+ + + +

= = = =
+ + + +

 (80) 

These ratios imply that the instrument mass plus the moving-mirror mass is 10% of the 

total system mass, whereas the moving-mirror mass is only 1% of the total mass.  The 

spacecraft inertia about the point o is equal to the inertia contributed by the total system 

mass and the total mass-center offset.   

Differentiating Eqs. (76), (77), and (78) to solve for X , Y , and aθ , and 

substituting X , Y , and aθ  into the resultant equation yield the control torque required 

for instrument precision pointing 

 

[ ]

[ ]

4

2 2 7

3

2.76705 0.32805( sin 2 cos 2 ) 10
0.3439 0.0081( sin cos )

2.25633(0.1 0.9cos ) ( cos sin ) 10

0.3439 0.0081( sin cos )

a a
p

a a

a a a

a a

s s
s

s s

s

θ θ
τ

θ θ

θ θ θ

θ θ

−

−

+ − ×
=

− + −

⎡ ⎤+ + ×⎣ ⎦+
− + −

 (81) 
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Given a mirror-motion profile such as the square wave that yields s , s , and s , and the 

spacecraft angular displacement aθ , the control torque time history can be computed 

from Eq. (81). In practice, one would use Eq. (70) with the insertion of measured 

quantities X  and Y , and pre-specified s  and s  to compute the torque pτ . With the 

control torque computed and applied to the system, the translational and rotational 

displacements are described by Eqs. (76), (77), and (78).  For parametric analysis, let us 

rewrite Eqs. (76), (77), and (78)  in terms of s  as the independent variable, rather than 

the time t, to yield   

 
{ }2 1 1 2 1

2 2
1 1 1 2 1

I (1 ) cos sin (1 ) sin

I (1 ) (1 ) ( sin cos )
a b a a a a

a a a b a

m c m c m s m cdX
ds m c m c m s m c

θ θ θ

θ θ

⎡ ⎤− − − + − + −⎣ ⎦
=

− − + − −
 (82) 

 
2

1 2
2 2

1 1 1 2 1

(1 ) ( cos )sin
I (1 ) (1 ) ( sin cos )

a b a a a

a a a b a

m m c c cdY
ds m c m c m s m c

θ θ
θ θ

− −
=

− − + − −
 (83) 

 

 1 2
2 2

1 1 1 2 1

(1 ) ( cos )
I (1 ) (1 ) ( sin cos )

a b a a

a a a b a

d m m c c
ds m c m c m s m c
θ θ

θ θ
− −

=
− − + − −

 (84) 

 
Integrating Eqs. (82), (83), and (84) simultaneously for 1 0s≥ ≥  produces the following 

three relationships, i.e.,  X  versus s  shown in Figure 6, y  versus s  shown in Figure 7, 

and θ   versus s shown in Figure 8.  

 
 
 
  
 
 
 
 
 
 
 
 
 

Figure 6: System displacement on X-axis versus moving-mirror displacement 
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Figure 7:  System displacement on Y-axis versus moving-mirror displacement 

 
 
 

 

 

 

 

 

 

Figure 8: Angular displacement on Z-axis versus moving-mirror displacement 

 

Observe that Figure 6 and Figure 8 show a linear relationship for small angle aθ . 

Assume that the mirror is moving as a sine wave with amplitude a and frequency 

ω  such that 

 ( )22

2 2

sin

cos 1 sin 1

sin

s a t

s a t a t a s a

s a t s

ω

ω ω ω ω ω

ω ω ω

=

= = − = −

= − = −

 (85) 

Substituting Eq. (85) into Eq. (81) and plotting the result pτ  against s  and aθ  in the 

range of 0.1 0s≥ ≥  and 4 0aπ θ≥ ≥  with 1Hzω =  yields Figure 9, showing that large 

amplitude s  and displacement aθ  will require higher torque pτ  for fine-pointing control.   
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Figure 9: Control torque pτ  versus moving-mirror displacement s  and spacecraft 
angular displacement aθ  

Control Torque for 0aθ =  

 Consider another case where 0aθ = .  System equations (76), (77), and (78) for 

linear and angular velocities become 

 
[ ]2 1 1

2 2
1 1 1 1

1 2

I (1 )
1 0 ; I (1 ) (1 )

(1 ) ( )

a b

a a b

a b a

X m c c m s
Y m c m c c m

m m c c s

γ
γ

θ

⎡ ⎤
⎡ ⎤⎢ ⎥ − − −
⎢ ⎥⎢ ⎥ = = − − − −⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ − −⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦
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Differentiating Eqs. (76), (77), and (78) to solve for X , Y , and aθ  with 0aθ =  for linear 

and angular accelerations yields 

 

[ ] 2 4 3 2 2
2 1 1 1 2

3

3 2 2 2
1 2

2

3 3 2 2
1 2 1 2

3

I (1 ) (1 ) ( )

(1 ) ( )

(1 ) ( ) (1 ) ( )

a b a a b

a b a

a
b a a a b

m c c m s c m m c c s s

X
c m m c c sY

m m c c s c m m c c s s

γ γ

γ
θ

γ γ

⎡ ⎤− − − −⎢ ⎥− −
⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

− −⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ − − − −⎢ ⎥⎣ ⎦ −⎢ ⎥

⎢ ⎥⎣ ⎦

 (87) 

pτ

s

aθ

310−×

4
π



 25

The control torque for inertia pointing when 0aθ =  becomes 
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 (88) 

Equation (88) implies that the control torque pτ  can be expressed in terms of s , s , and 

s  at any given angle aθ , because the linear accelerations X  and Y  are purely induced 

by the mirror motion with the absence of external forces.  Inserting the numerical values 

shown in Eqs. (79) and (80) into Eqs. (86), (87), and (88) yields  
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 (89) 
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 (90) 

and 

 4 6 26.92898 10 5.17388 10p s s sτ − −= − × − ×  (91) 

It is clear that the acceleration s  dominates the dependent quantities to be computed in 

Eqs. (90) and (91).   

Numerical Simulation 

 Assume that the moving-mirror is traveling as a sine wave such that 

 2(1 cos ); sin ; coss a t s a t s a tω ω ω ω ω= − = =  (92) 

Let the amplitude a and the traveling frequency ω  be  

 0.1; 1Hza ω= =  (93) 



 26

Integrating Eq. (66) with the insertion of numerical values defined in Eqs. (79) and (80) 

and zero initial condition generates the time histories for X , Y , aθ , and bθ  shown in  

Figure 10 and for X , Y , aθ , and bθ  shown in Figure 11.  The control-torque time 

histories are given in Figure 12.  The curves marked in red in Figure 10 through Figure 

12 show the time histories with no control torque.  The curves in green give the time 

histories with partial control feedback only from the acceleration s  of the mirror motion 

[see Eq. (72)].  The curves in blue represent the time histories with full-control feedback 

as defined in Eq. (70) from the acceleration s , and the accelerations X  and Y  of the 

spacecraft at the joint with the instrument attached. 

 Intuitively, we may consider only the feedback of the original acceleration source, 

i.e., s  due to the mirror motion, and ignore other accelerations induced by the source.  

The time history in green for the pointing error bθ  shown in Figure 12 illustrates a clear 

reduction with control half that of the time history in red without control.  Nevertheless, it 

is seen from the lower part of Figure 12 that the control torque, marked in green, with the 

absence of X  and Y  feedback expresses an overshoot in magnitude relative to the full-

control torque in blue.  It reflects the displacement overshoot, i.e., from positive 

displacement in red without control (cross the blue line on the zero axis) to become 

negative displacement in green with mirror acceleration control only.  With full control 

including s , X , and Y  feedback, the pointing error bθ  marked in blue vanishes 

completely.   

The time histories for the system displacement X  with and without control are 

approximately two orders in magnitude larger than those for the displacement Y .  The 

same statement is also true for the velocity time histories.  This is due to the fact that the 

simulation begins with the angle at 0aθ =  and the mirror motion initially perpendicular 

to the Y axis.  In addition, since the instrument including the moving mirror is much 

smaller in weight and inertia than the spacecraft, the control torque required for the 

instrument pointing does not induce much into the spacecraft rotation angle aθ  and its 
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angular velocity aθ .  As a result, the control torque would influence the X-axis motion 

much more than the Y-axis motion. 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Time histories for X , Y , aθ , and bθ  with and without control torque 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 11: Time histories for X , Y , aθ , and bθ  with and without control torque 
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Figure 12: Time histories for pointing error bθ  and control torque pτ . 

 

Concluding Remarks 

Parametric and numerical studies are performed in this paper to analyze attitude 

precision dynamics and control for an instrument gimbaled to a spacecraft.  We focus on 

the attitude pointing error caused by the internal disturbance from a moving mirror inside 

the instrument.  First, we examine the relationship among the pointing angle error, the 

inertia ratio, and the moving-mirror displacement, assuming that the instrument is locked 

to the spacecraft.  An analytical solution is derived for the complex, but very useful, 

relationship that provides a road map for an engineer to determine how to design an 

optimal configuration for an instrument with a moving mirror.  Secondly, we examine the 

case when active control is needed to counter balance or reject the internal disturbance 

for attitude precision control.  A simple control law is developed producing the control 

torque that is capable of eliminating the pointing error induced by the internal disturbance.  

The control torque is a weighted sum of the mirror moving acceleration and the system 

linear acceleration at the point where the instrument is attached to the spacecraft.  A 
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system/control engineer may minimize the control torque by reducing the weighting 

coefficients that mainly depend on the instrument configuration.  Note that all analytical 

solutions in this paper are derived under the assumption of single rotation axis.  The 

concept and approach are believed to be applicable to general cases.  Numerical results 

from a sample case indicate the importance of an appropriate control torque otherwise 

overshoot may occur that, in turn, waste the control energy. 
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